Druckerei und Verlag Mainz - Aachen

Beiträge zum selbstüberwachten Training Neuronaler Phonem Klassifikatoren

30,20€ inkl. MwSt.

    Autor: Finster, Harald
    ISBN: 978-3-86073-431-5
    Auflage: 1
    Seiten: 160
    Einband: Paperback
    Reihe: ABDN
    Band: 2

Zum Inhalt

Systeme zur Erkennung fließend gesprochener Sprache basieren auf phonetischen Grundelementen (z.B. Phoneme oder Diphone), deren Erkennung in einer Trainingsphase mit Hilfe repräsentativer Sprachproben erlernt wird. Für dieses Training steht die Phonetische Transkription (Lautschrift-Text) zur Verfügung. Dabei ist die Segmentierung, d.h. die zeitliche Zuordnung zwischen Sprachsignal und Phonetischer Transkription zunächst nicht bekannt. Eine manuelle Zuordnung ist extrem zeitaufwendig und fehlerträchtig. In der vorliegenden Arbeit werden für Neuronale Phonem-Klassifikatoren neue Trainingsverfahren mit automatischer Segmentierung entwickelt. Das vorgestellte Konzept besteht aus einem dreistufigen Iterationszyklus. Im ersten Schritt erfolgt eine Phonem-Klassifikation. Darauf basierend wird im zweiten Schritt eine zeitliche Zuordnungsschätzung zwischen dem Sprachsignal und dem Lautschrift-Text ermittelt. Mit Hilfe dieser Schätzung erfolgt im dritten Schritt das Training des Phonem-Klassifikators. Aus der verbesserten Phonem-Klassifikation resultiert eine genauere Zuordnungsschätzung, die wiederum zum Training des Klassifikators ausgenutzt werden kann. Es werden zwei Hauptvarianten entwickelt. Das Training mit "hartem Pfad" berücksichtigt nur einen optimalen Zuordnungspfad zwischen der Merkmalsvektorfolge und der Phonetischen Transkription. Dagegen erfolgt das Training mit "weichem Pfad" auf der Basis von Zuordnungswahrscheinlichkeiten zwischen der Merkmalsvektorfolge und der Phonetischen Transkription. Dies führt dazu, daß "sichere" Zuordnungen mit höherem Gewicht in das Training eingehen als 'unsichere' Zuordnungen. Daraus ergeben sich bessere Konvergenzeigenschaften. Der Rechenaufwand ist bei beiden Verfahren sehr hoch. Die Algorithmen sind jedoch parallelisierbar, so daß sich die Rechenzeit bei Einsatz geeigneter paralleler Prozessoren erheblich reduzieren läßt. Die hier vorgestellten Verfahren ermöglichen das automatische, d.h. selbstüberwachte Training und liefern im Vergleich zum Stand der Technik genauere Segmentierungsgrenzen. Es wird schließlich gezeigt, daß die in dieser Arbeit entwickelten Methoden nicht nur für die Sprachsegmentierung, sondern auch für die allgemeinere Aufgabenstellung der automatischen Zuordnung zwischen den Elementen zweier Symbolfolgen geeignet sind.

Beurteilungen (0)

Neue Beurteilung

Bitte anmelden oder registrieren um Beurteilung zu schreiben